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Abstract The English grain aphid, Sitobion avenae

(Fabricius), is one of the most important insect pests caus-

ing substantial yield losses in wheat production in China

and other grain-growing areas in the world. The efficient

utilization of wheat genes for resistance to English grain

aphid (EGA) provides an efficient, economic and environ-

mentally sound approach to reduce the yield losses. In the

present study, the wheat line C273 (Triticum durum AABB,

2n = 4x = 28), is resistant to EGA in greenhouse and field

tests. To identify the resistance gene, designated RA-1

temporarily, C273 was crossed with susceptible genotype

Poland 305 (T. polonicum, AABB, 2n = 4x = 28). The

F1, F2 and F2:3 lines were tested with EGA in the field and

greenhouse. The results indicated that RA-1 is a single

dominant gene, closely linked to the microsatellite markers

(SSR) Xwmc179, Xwmc553 and Xwmc201 on chromosome

6AL at genetic distances of 3.47, 4.73 and 7.57 cM,

respectively. The three SSR markers will be valuable in

marker-assisted selection for resistance to EGA as well as

for cloning this gene in the future.

Introduction

At present, five aphid races severely affect wheat produc-

tion all over the world. They are Russian wheat aphid

(RWA) [Diuraphis noxia (Kurdjumov)], English grain

aphid (EGA) [Sitobion avenae (Fabricius)], greenbug

[Schizaphis graminam (Rondani)], bird cherry-oat aphid

[Rhopalosiphum padi (Linnaeus)], and Acyrthosiphon

dirhodum (Walker). EGA is one of the most economically

important species among cereal aphids in the wheat

planting areas of China and in some other grain-growing

areas worldwide (Johnston and Bishop 1987; Feng et al.

1991; Dedryver et al. 2008; Thackray et al. 2009; Alkhedir

et al. 2010). It can cause considerable damages to grain

production by direct feeding, excretion of honeydew and

virus transmission (Budenberg et al. 1992; Longley and

Jepson 1996; Dedryver et al. 2005; Yang et al. 2005;

Tanguy and Dedryver 2009). EGA infestations may reduce

wheat grain yield as much as 44.26% (Xu et al. 1998), and

it causes significant yield losses in more than 90% of wheat

production areas in China (Yang et al. 2005).

Chemical insecticides are often used to control aphid

damage, but these result in severe environmental pollution

(Flickinger et al. 1991; Daily et al. 1998). Use of resistant

wheat cultivars can provide an efficient, economic and

environmentally friendly approach to reduce the yield

losses caused by the injury of EGA. There has been a

worldwide effort to investigate EGA and identify EGA-

resistant germplasm. Wheat resistance to the aphid is

negatively correlated with the wax powdery and ear density

(Watt 1979; Acreman and Dixon 1986; Zheng et al. 1999;

Liu et al. 2006). In addition, resistance to this aphid in

wheat is associated with the nutriments (Kazemi and Van

Emden 1992; Havlickova 1996) and the secondary chem-

icals of wheat such as DIMBOA (the main hydroxamic

acids in wheat) (Leszcynski et al. 1992; Nicol and Wratten

1997; Fuentes-contreras and Niemeyer 1998; Yin et al.

2005), alkaloids (Cai et al. 2009), and phenolics (Ciepiela

1989). More than 200 accessions of common wheat and its

relatives have been evaluated for EGA resistance since
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1982. The ancient wheat species Einkorn and Emmer, and

the modern Sicco exhibited resistance to the cereal aphids

EGA, in terms of non-preference and antibiosis on plants

at three growth stages in laboratory (Sotherton and

VanEmden 1982). Of 3,516 wheat germplasm investigated,

Nongda-4356, Yanda-1817, Nongda-198 and Nongda-6085

showed resistance to EGA (Zhou et al. 1982). Of the 91

spring wheat breeding lines tested, 26 showed some

resistance to EGA in the greenhouse (Lowe 1984). Duan

et al. (2006) reported that Sigeasson, Zhongpin 1818,

PI262660 and PI243781 displayed resistance to EGA by

combining seedling and adult plant resistance tests. Using

the electrical penetration graph (EPG) technique (Caillaud

et al. 1995) and the intrinsic rate of natural increase (rm)

(Di Pietro et al. 1993), T. monococcum line Tm44 was

identified as a highly resistant wheat genotype to EGA.

Five species among 41 wild and cultivated wheat lines

showed antibiosis to EGA estimated by the plant biomass

lose due to aphid infestation (Migui and Lamb 2003). Ou

et al. (2005) reported resistance to EGA in Bainong64 and

Yanzhan-1 by reduction ratio of wheat weight per 1,000

grains. Liu et al. (2006) reported T. durum line C273 and

T. turgidum S894 were highly resistant to EGA by the

method of aphid number ratio.

Development of new varieties with resistance to EGA is

urgently needed to reduce further losses caused by EGA.

However, conventional breeding methods via phenotypic

selection are cumbersome, time consuming and sometimes

inconclusive, particularly in the breeding of aphid-resistant

wheat varieties. Aphid density may be affected by envi-

ronmental conditions, such as heavy rainfall and strong

wind, suggesting that more efficient techniques are needed

to identify EGA-resistant genes or genotypes. The identi-

fication of molecular markers closely linked to the resis-

tance genes not only facilitates the identification and

mapping of insect-resistant genes, but also allows the

marker-assisted selection (MAS) of resistant lines in the

wheat breeding programs. The MAS approach particularly

enhances the prospect of pyramiding traits in desired

germplasm and varieties, leading to a fast process of

breeding for multiple and durable resistance.

Several molecular markers systems (e.g., RAPD, RFLP,

AFLP and SSR) have been used in MAS for breeding

RWA-resistant lines (Myburg et al. 1998; Venter and

Botha 2000; Matsioloko and Botha 2003; Liu et al. 2001)

and greenbug-resistant lines (Weng and Lazar 2002; Boyko

et al. 2002; Zhu et al. 2004, 2005). Among these markers,

SSRs are reliable, highly polymorphic and can link a gene

to a specific chromosome or arm. SSRs are easy to use and

have been widely adopted for locating RWA- and green-

bug-resistant genes. It was reported that the RWA-resistant

genes Dn0, Dn1, Dn2, Dn5, Dn6, and DnX were closely

linked to SSR marker Xgwm111 on chromosome 7DS

(Saidi and Quick 1996; Liu et al. 2001, 2005), and Dn9 was

associated with Xgwm642 on chromosome 1DL (Liu et al.

2001). A greenbug-resistant gene Gbz co-segregated with

the SSR marker Xwmc157 on chromosome 7DL (Zhu et al.

2004), and another greenbug-resistant gene Gb3 was

placed in the same chromosome (Weng and Lazar 2002).

However, at present, no molecular markers linked to EGA-

resistant genes have been reported.

The aims of the present study were to identify the EGA-

resistant gene in Triticum durum wheat line C273 and its

closely linked SSR markers. We mapped the accurate

location of these markers for practical use in the develop-

ment of wheat varieties for resistance to EGA.

Materials and methods

Plant materials

To study the resistance to EGA in the durum wheat line

C273 (T. durum AABB, 2n = 4x = 28), an aphid-suscep-

tible wheat variety. Poland 305 (T. polonicum, AABB,

2n = 4x = 28) was used as the female parent to cross with

the aphid-resistant wheat line C273 (Liu et al. 2006). The

F1, F2 and F2:3 populations derived from the cross were

used for mapping the resistance gene to EGA. A bread

wheat cultivar Xiaoyan 6, highly susceptible to EGA, was

used as a control in the present study.

Evaluation of EGA resistance in field and greenhouse

F1 plants, and F2 and F2:3 segregating populations were

evaluated for their resistance to EGA in the field and

greenhouse in Northwest A & F University during

2005–2009 cropping seasons.

For the field evaluation, about 20 seeds of each parent

and F1 were planted in a 1-m row and 130 F2 seeds were

planted in 1-m rows with 10 seeds in each row and 24 cm

between rows. The plots were surrounded by the suscep-

tible control Xiaoyan 6 as a spreader. We used conven-

tional management without the application of pesticide

during the whole growth period. At the jointing-booting

stage, each plant of Xiaoyan 6 in source of infection was

artificially infested with 50 EGAs and the above-tested

wheat materials were subsequently infected. The number

of aphids was determined at the milky stage when the

outbreak of the aphid occurred. Ten severely infested

parental and F1 plants were examined and the absolute

number of aphids was recorded if it was below 50 per

stem. The average resistance score with stems was deter-

mined for each of the F2 plants. F2:3 seeds were harvested

from the F2 plants for testing F2:3 lines in the field as

described above.
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For the greenhouse evaluation, about 20 seeds of each

parent and F1 and Xiaoyan 6, and 160 F2 seeds were

planted in plastic pots filled with a potting mixture. Seed-

lings grew in the greenhouse at 16 h light and 8 h dark with

diurnal temperatures 20–22�C. At the three-leaf stage, each

plant was artificially infested with 5 same size EGAs and

evaluated for resistance in 7 and 14 days after treatment,

respectively.

The aphid resistance was scored according to the Pain-

ter’s (1951) method as described. Infestation severity was

scored from 0 to 6 in which scores of 0–3 represented

aphid-resistance while scores 4–6 represented aphid-

susceptibility (Table 1).

DNA extraction, PCR amplification, electrophoresis

and gel visualization

At the three-leaf stage, the second leaf from each of the F2

progenies and parents was harvested for DNA extraction.

Genomic DNA was extracted using the CTAB procedure.

DNA was quantified using the mini-gel method and a

spectrophotometer. DNA concentrations were adjusted to

30 ng/lL for the use in PCR.

SSR markers (Roeder et al. 1998; Somers et al. 2004)

were used to map the resistance gene. The primer

sequences, chromosomal locations and PCR protocols were

obtained from the GrainGenes Database available at

http://www.wheat.pw.usda.gov/. Primers were synthesized

by SBS Sangon (Shanghai, China). Amplification reactions

were performed in a total volume of 10 lL containing

20–40 ng of genomic DNA, 250 nM of each primer, 2 mM

of MgCl2, 200 lM of dNTPs, 5.5 lL of 19 Buffer, 0.25 U

of Taq DNA polymerase (Dongsheng, Guangdong, China).

The microsatellite PCR was carried out as described by

Wang et al. (2007) using a Perkin Elmer 480 thermocycler.

PCR products were analyzed by polyacrylamide gel

electrophoresis (PAGE). Banding patterns were visualized

with silver staining. Briefly, the gel on a glass plate was

pretreated with fix/stop solution [10% alcohol and 0.5%

acetic acid (v/v)] for 10 min, and then stained in the 0.2%

AgNO3 solution for 15 min. After a brief rinse in distilled

H2O for 1 min, the gel was transferred into a solution

containing 0.002% (w/v) sodium thiosulfate for 1 min

followed by incubation in the well-chilled developer

solution (15% (w/v) sodium hydrate and 0.4% (v/v)

formaldehyde) for 3–8 min. The reaction was stopped by

incubating the gel in distilled water with shaking for 5 min.

Bulked segregant analysis

SSR markers linked to EGA-resistant genes were initially

identified through bulked segregant analysis (BSA)

(Michelmore et al. 1991). Two DNA bulks were assembled

by equal amounts of DNA from eight most resistant and

eight most susceptible F2 plants, respectively, which were

confirmed as homozygous resistant or homozygous, sus-

ceptible by testing the F2:3 lines in the field. A total of 565

microsatellite primer pairs specific for wheat chromosomes

A and B, were used to screen the parents and bulks. Primer

pairs generating bands specific to both C273 and the

resistant bulk, were used to genotype all F2 plants.

Statistical analysis and genetic mapping

Chi-squared (v2) test was used to evaluate the goodness of

fit of observed and expected segregation ratios for EGA

reactions and molecular markers. The ‘‘chi-test’’ procedure

in the Excel data analysis of Microsoft Office 2007 was

used to calculate P values. Recombination frequency (RF)

or linkage relationship between microsatellite markers and

EGA-resistant gene were calculated using maximum-like-

lihood equations with F2 data for marker genotype and

plant phenotype of the EGA reaction. The linkage maps

were constructed using the software MapMaker3.0

(Lincoln et al. 1992). A LOD threshold of 3.0 was set to

declare markers as significant. The Kosambi function

(Kosambi 1944) was applied to convert RF into genetic

map distance (cM).

Results

Inheritance of EGA resistance in C273

C273 was highly resistant to EGA in the 2006 seedling test

and the 2005–2006, 2006–2007 field tests whereas Poland

305 was susceptible, and the F1 plants from the cross

between C273 and Poland 305 were resistant to EGA

(Table 2).

As shown in Table 3, the F2 segregation ratio indicated

that resistance to EGA was controlled by a single dominant

Table 1 Evaluation of wheat resistance to EGA

Resistance scale Resistance Ratio of aphid

quantitya

0 Immunity 0

1 HR 0.01–0.30

2 MR 0.31–0.6

3 LR 0.61–0.9

4 LS 0.91–1.2

5 MS 1.21–1.5

6 HS [1.5

a Ratio of aphid quantity = A/B

A The average aphid number per stem of each tested material, B The

average aphid number per stem of all tested materials
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gene. In the 2007 seedling test, the spaced planting of about

160 F2 seeds produced 138 F2 plants for recording resis-

tance to EGA, of which 95 were resistant and 43 suscep-

tible, fitting to 3:1 ratio (v2 = 1.29, df = 1, P = 0.25)

(Table 3). In the 2007–2008 field test, the spaced planting

of about 130 F2 seeds produced 80 F2 plants for recording

resistance to EGA, of which 61 were resistant and 19

susceptible, fitting to 3:1 ratio (v2 = 0.03, df = 1,

P = 0.85) (Table 3). Therefore, it is likely a single domi-

nant gene conferred the resistance to EGA in C273.

Seventy-five F2:3 lines were tested with EGA in the field

in 2008–2009. The tests produced identical results with F2

population confirming segregation at a single locus. The 19

homozygous susceptible lines were derived from susceptible

F2 plants and 15 resistant and 41 segregating lines were from

resistant F2 plants. Resistant lines, segregating lines and

susceptible lines accorded with a ratio of 1:2:1 (v2 = 0.57,

df = 2, P = 0.44). The results indicated that a single dom-

inant gene in C273 conferred resistance to EGA and the

phenotypic data were reliable for molecular mapping.

Molecular mapping of the EGA-resistant gene in C273

Of the 565 SSR primer pairs evaluated, 76 amplified

polymorphic fragments between the resistant parent C273

and the susceptible parent Poland 305. Five of the seventy-

six primer pairs generated nine robust and repeatable

polymorphic bands in bulked segregant analysis and were

selected to test the eighty F2 plants (Table 4). As an

example, SSR WMC553 amplified 400 and 360 bp frag-

ments from DNA of the resistant parent C273 and resistant

bulk, absent in the susceptible parent and susceptible

bulk, and 390 and 350 bp fragments from DNA of the

susceptible parent Poland 305 and susceptible bulk.

Table 2 EGA resistance in

parental and F1 plants from the

cross of Poland 305 9 C273

Plant material Ratio of aphid quantity Resistance Resistance

scale
Seedling stage

in the greenhouse

Grain filling stage

in the field

Xiaoyan 6 1.85 1.87 HS 6

C273 0.27 0.25 HR 1

Poland 305 1.11 1.49 S 4/5

F1 0.78 0.23 R 3/1

Table 3 EGA resistance in F2 population from the cross of Poland 305 9 C273

F2 Progeny Population Expected

ratio

v2 P

R S

I HR MR LR LS MS HS

Seedling stage in the greenhouse 3 31 34 27 13 13 17 3:1 1.09 0.32

95 43

Grain filling stage in the field 0 14 20 27 6 6 7 3:1 0.03 0.85

61 19

Table 4 Molecular markers linked to the gene for resistance to EGA in C273, size and presence or absence in C273 and Poland 305, number of

F2 plants with or without the makers, and v2 tests

Marker Size (bp)a Presence (?) and

absence (-) of the

marker

Number of F2-resistant

plants with or without the

marker

Number of F2 susceptible

plants with or without the

marker

Number of F2 plants with or

without the marker

C273 Poland 305 With Without With Without With Without v2 P

Xgwm570 100 ? - 52 9 2 17 54 26 0.76 0.38

Xwmc179 245, 220 ? - 58 3 3 16 61 19 0.03 0.85

Xwmc553 400, 360 ? - 56 5 2 17 58 22 0.03 0.85

Xwmc201 250, 300 ? - 54 7 2 17 56 24 0.28 0.59

Xwmc580 150 ? - 55 6 10 9 65 15 0.59 0.44

a The sizes of markers were estimated using DNA size markers
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Segregation in the F2 population is shown in Fig. 1.

Microsatellite primer WMC179 amplified 245 and 220 bp

fragments from DNA of the resistant parent C273 and

resistant bulk, absent in the susceptible parent and sus-

ceptible bulk, and 210, 230 and 255 bp fragments from

DNA of the susceptible parent Poland 305 and susceptible

bulk. Segregation in the F2 population is shown in Fig. 2.

Five markers segregated in 3:1 ratios for the presence

and absence (Table 4), indicating that these markers were

single-locus markers. The results of linkage analyses

indicated that microsatellite markers Xgwm570, Xwmc179,

Xwmc553, Xwmc201 and Xwmc580 on chromosome 6AL

were linked to RA-1 with genetic distances of 15.04, 3.47,

4.73, 7.57 and 22.07 cM, respectively (Fig. 3).

Discussion

There have been different arguments on the inheritance of

EGA resistance in wheat. For example, Wu et al. (1999)

reported that EGA resistance was a quantitative trait con-

trolled by minor polygenes and affected by environmental

condition and adaptation of the aphids, whereas Ou et al.

(2005) showed that the resistance to EGA was largely

correlated with the genetic background of the parental

plants. The progeny plants of resistant parents had a strong

resistance to EGA while the progeny plants of susceptible

parents were susceptible to EGA, indicating that the

resistance to EGA was strongly inheritable. Diallel cross-

ing tests among three EGA-resistant and susceptible

cultivars showed that EGA resistance was consistent with

the incomplete dominant model in which resistance was

controlled by a single gene (Yin et al. 2003). The genetic

analysis of resistance evaluated by aphid number ratio

method, using the F1 plants and F2 populations derived

from the cross between the resistant Linyuan 207 and

susceptible Witchita (Duan et al. 2006), those from cross-

ing the resistant line J231 and susceptible line J239, and

from the cross between the resistant line J248 and sus-

ceptible line J239 (Hu et al. 2009), showed that EGA

resistance in the resistant lines Linyuan 207, J231 and J248

were controlled by a single dominant gene. In this current

study, genetic analysis showed that a single dominant gene

was responsible for resistance to EGA in C273 consistent

with those reported previously (Duan et al. 2006; Hu et al.

2009). But the resistance gene to EGA in Linyuan 207,

J231 and J248 were not localized on a specific chromo-

some locus.

Based on breeding records, we cannot pinpoint the exact

original genetic material for C273. But C273 is a tetraploid

wheat line, whereas Linyuan 207, J231 and J248 are

Fig. 1 PCR amplification patterns by primer Xwmc553 in F2 segregating population of Poland 305 9 C273. M represents DNA ladder DL 2000,

line 1 Poland 305, 2 C273, 3 resistant bulk, 4 susceptible bulk, 5–16 aphid-resistant plants, 17–21 susceptible plants

Fig. 2 PCR amplification patterns by primer Xwmc179 in F2 segregating population of Poland 305 9 C273. M represents DNA ladder DL2000,

line 1 Poland 305, 2 C273, 3 resistant bulk, 4 susceptible bulk, 5–15 aphid-resistant plants, 16–21 susceptible plants

Fig. 3 Genetic linkage map of

wheat chromosome 6AL

consisting of a EGA-resistant

gene RA-1 based on 80 F2 plants

from Poland 305 9 C273
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hexaploid wheat lines, indicating that C273 may provide

another useful independent-resistant gene to EGA, origi-

nation from the A genome. Our results indicated that RA-1

is closely linked to two microsatellite markers located on

the long arm of wheat chromosome 6A (Daryl et al. 2004),

Xwmc553 and Xwmc179 at distances of 4.73 and 3.47 cM,

respectively. This is the first report on gene location and

molecular mapping of resistance to EGA in wheat.

To date, there are more than 20 designated resistance

genes to greenbug (Zhu et al. 2004; Weng and Lazar 2002)

and RWA (Anderson et al. 2003; Liu et al. 2001, 2005;

Heyns et al. 2006), and many others genes with temporary

designations. We identified an effective EGA-resistant

gene in wheat line C273 and mapped it to the long arm of

chromosome 6A. This gene should be useful in developing

cultivars with an effective resistance to EGA, and the

linked SSR markers Xwmc553 and Xwmc179 could be used

in marker-assisted selection for EGA resistance in wheat

breeding programs.
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